For kids, daily juice probably won’t pack on the pounds

I’ve been to the playground enough times to know a juicy parenting controversy when I see (or overhear) one. Bed-sharing, breastfeeding and screen time are always hot-button issues. But I’m not talking about any of those. No, I’m talking about actual juice.

Some parents see juice as a delicious way to get vitamins into little kids. Others see juice as a gateway drug to a sugar-crusted, sedentary lifestyle, wrapped up in a kid-friendly box. No matter where you fall on the juice spectrum, you can be sure there are parents to either side of you. (Disclosure: My kids don’t drink much juice, simply because the people who buy their groceries aren’t all that into it. And juice is heavy.)

Scientific studies on the effects of juice have been somewhat sparse, allowing deeply held juice opinions to run free. One of the chief charges against juice is that it’s packed with sugar. An 8-ounce serving of grape juice, even with no sugar added, weighs in at 36 grams. That tops Coca-Cola, which delivers 26 grams of sugar in 8 ounces. And all of those extra sweet calories can lead to extra weight.

A recent review of eight studies on juice and children’s body weight, published online March 23 in Pediatrics, takes a look at this weight concern. It attempts to clarify whether kids who drink 100 percent fruit juice every day are at greater risk of gaining weight. After sifting through the studies’ data, researchers arrived at an answer that will please pro-juicers: Not really.

“Our study did not find evidence that consuming one serving per day of 100 percent fruit juice influenced BMI to a clinically important degree,” says study coauthor Brandon Auerbach of the University of Washington in Seattle.

The analysis found that for children ages 1 to 6, one daily serving of juice (6 to 8 ounces) was associated with a sliver of an increase in body mass index, or BMI. Consider a 5-year-old girl who started out right on the 50th percentile for weight and BMI. After a year of daily juice, this girl’s BMI may have moved from the 50th to the 52nd or 54th percentile, corresponding to a weight increase of 0.18 to 0.33 pounds over the year. That amount “isn’t trivial, but it’s not enough on its own to lead to poor health,” Auerbach says.

The results, of course, aren’t the final word. The analysis was reviewing data from other studies, and those studies came with their own limitations. For one thing, the studies didn’t assign children to receive or not receive juice. Instead, researchers measured the children’s juice-drinking behavior that was already under way and tried to relate that to their weight. That approach means that it’s possible that differences other than juice consumption could influence the results.
It’s important to note the distinction here between the 100 percent fruit juice in the studies and fruit cocktails, which are fruit-flavored drinks that often come with lots of added sugar. The data on those drinks is more damning in terms of weight gain and the risk of cavities, Auerbach says.

Also worth noting: The American Academy of Pediatrics recommends that kids between ages 1 and 6 get only 4 to 6 ounces of juice a day. That’s a smaller amount than many of the kids in the studies received. And the AAP recommends babies younger than 6 months get no juice at all.

In general, whole fruits, such as apples and oranges, are better than juice because they provide fiber and other nutrients absent from juice. (Bonus for toddlers: Oranges are fun to peel. Bummer for parents: Doing so makes a sticky mess.)

Still, the new analysis may ease some guilt around letting the juice flow. And it can enable parents to save their worries for more harmful things, of which there are plenty.

‘River piracy’ on a high glacier lets one waterway rob another

River piracy
RIV-er PAHY-ruh-see n.
The diversion of headwaters from one stream into another

Ahoy! There be liquid booty on the move in the high mountains. Since May 2016, a channel carved through one of northwestern Canada’s largest glaciers has allowed one river to pillage water from another, new observations reveal. This phenomenon, almost certainly the result of climate change, is the first modern record of river piracy caused by a melting glacier, researchers report online April 17 in Nature Geoscience. Such piracy was rampant as the colossal ice sheets of the Last Glacial Maximum began shrinking around 18,000 years ago.
For hundreds of years, the Kaskawulsh Glacier formed a wall that segregates snow and ice meltwater into two streams: the Slims River, which joins with other streams and crosses Alaska before draining into the Bering Sea, and the Kaskawulsh River, which flows southward into the Pacific Ocean.

Last summer, geomorphologist Daniel Shugar of the University of Washington Tacoma and colleagues discovered that melting had carved a canyon across the toe of Kaskawulsh Glacier. This new channel diverts almost all meltwater into the Kaskawulsh River. That’s robbed the now largely parched Slims River and could decrease fish populations and the availability of nutrients downstream, the researchers predict.

Big slimy lips are the secret to this fish’s coral diet

Tubelip wrasses eat dangerously, daring to dine on sharp corals lined with stinging cells. New images reveal the fish’s secret to safe eating: lubing up and planting a big one on their dinner.

“It is like sucking dew off a stinging nettle. A thick layer of grease may help,” says David Bellwood, a marine biologist at James Cook University in Townsville, Australia, who snapped the shots with his colleague Victor Huertas.

Of roughly 6,000 fish species that roam reefs, just 128 consume corals. These corallivores specialize in different menus. Well-studied butterfly fish, for example, use their long, thin snouts to nip up coral polyps, the tiny animals that build corals. Tubelip wrasses such as Labropsis australis of the South Pacific are known for nibbling coral with their luscious lips, but until now, it was unclear what part of the coral the fish were eating or how they were eating it.
While the surface of the wrasse’s lips looks smooth to the naked eye, convoluted grooves appear under a scanning electron microscope, the team reports June 5 in Current Biology. Mucus-producing cells line each groove. In contrast, the lips of a wrasse species that doesn’t eat corals (Coris gaimard) are sleek and sport fewer slime-secreting cells.

Video footage of L. australis shows that the fish feeds by latching onto coral with its lips and sucking. The slime probably protects the fish’s lips from stinging cells that line the coral skeleton and also serves as a sealant, allowing the wrasse to get suction against the coral’s razorlike ridges.

“Their kiss is so hard it tears the coral’s flesh off its skeleton,” Bellwood says. The team suspects that the fish feed primarily on mucus layers and sometimes tissue that lines the sharp skeleton. So, essentially the fish are using their lip mucus to better harvest the coral’s mucus.
Mucus is, in general, a hot commodity in the marine ecosystem. Some fish use it as sunscreen, others for speed — it can reduce drag through the water. Cleaner wrasses even eat slime off the skin of other fish (SN: 8/2/03, p. 78).

Given the threats that coral reefs face from bleaching events and climate change, having fish that suck their flesh might seem a tad brutal. But whether the added stress of snot-eating fish serves as a mere nuisance or a serious threat remains to be studied.

New fossils shake up history of amphibians with no legs

Newly named fossils suggest that a weird and varied chapter in amphibian deep history isn’t totally over.

Small fossils about 220 million years old found along steep red slopes in Colorado represent a near-relative of modern animals called caecilians, says vertebrate paleontologist Adam Huttenlocker of the University of Southern California in Los Angeles.

Caecilians today have long wormy bodies with either shrunken legs or none at all. Yet the nearly 200 modern species of these toothy, burrow-dwelling tropical oddballs are genuine amphibians. The fossil creatures, newly named Chinlestegophis jenkinsi, still had legs but could be the oldest known near-relatives of caecilians, Huttenlocker and colleagues suggest.

A popular view of the amphibian family tree has put caecilians on their own long, peculiar branch beside the ancient frogs and salamanders. But a close look at the new fossils suggests a much earlier split from ancestral frogs and salamanders, the researchers propose June 19 in Proceedings of the National Academy of Sciences. The move puts the caecilians into “a strange but incredibly diverse” group, the stereospondyls, Huttenlocker says. These species included elongated, short-legged beasts with heads shaped like toilet lids.

Among the many stereospondyls, Huttenlocker speculates that caecilians came from “an aberrant branch of miniaturized forms that went subterranean.” And today’s legless burrowers could be this once-flourishing group’s sole survivors.

Male cockatoos have the beat

Like 1980s hair bands, male cockatoos woo females with flamboyant tresses and killer drum solos.

Male palm cockatoos (Probosciger aterrimus) in northern Australia refashion sticks and seedpods into tools that the animals use to bang against trees as part of an elaborate visual and auditory display designed to seduce females. These beats aren’t random, but truly rhythmic, researchers report online June 28 in Science Advances. Aside from humans, the birds are the only known animals to craft drumsticks and rock out.
“Palm cockatoos seem to have their own internalized notion of a regular beat, and that has become an important part of the display from males to females,” says Robert Heinsohn, an evolutionary biologist at the Australian National University in Canberra. In addition to drumming, mating displays entail fluffed up head crests, blushing red cheek feathers and vocalizations. A female mates only every two years, so the male engages in such grand gestures to convince her to put her eggs in his hollow tree nest.

Heinsohn and colleagues recorded more than 131 tree-tapping performances from 18 male palm cockatoos in rainforests on the Cape York Peninsula in northern Australia. Each had his own drumming signature. Some tapped faster or slower and added their own flourishes. But the beats were evenly spaced — meaning they constituted a rhythm rather than random noise.

From bonobos to sea lions, other species have shown a propensity for learning and recognizing beats. And chimps drum with their hands and feet, sometimes incorporating trees and stones, but they lack a regular beat.

The closest analogs to cockatoo drummers are human ones, Heinsohn says, though humans typically generate beats as part of a group rather than as soloists. Still, the similarity hints at the universal appeal of a solid beat that may underlie music’s origins.

Quantum tunneling takes time, new study shows

Quantum particles can burrow through barriers that should be impenetrable — but they don’t do it instantaneously, a new experiment suggests.

The process, known as quantum tunneling, takes place extremely quickly, making it difficult to confirm whether it takes any time at all. Now, in a study of electrons escaping from their atoms, scientists have pinpointed how long the particles take to tunnel out: around 100 attoseconds, or 100 billionths of a billionth of a second, researchers report July 14 in Physical Review Letters.
In quantum tunneling, a particle passes through a barrier despite not having enough energy to cross it. It’s as if someone rolled a ball up a hill but didn’t give it a hard enough push to reach the top, and yet somehow the ball tunneled through to the other side.

Although scientists knew that particles could tunnel, until now, “it was not really clear how that happens, or what, precisely, the particle does,” says physicist Christoph Keitel of the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. Theoretical physicists have long debated between two possible options. In one model, the particle appears immediately on the other side of the barrier, with no initial momentum. In the other, the particle takes time to pass through, and it exits the tunnel with some momentum already built up.

Keitel and colleagues tested quantum tunneling by blasting argon and krypton gas with laser pulses. Normally, the pull of an atom’s positively charged nucleus keeps electrons tightly bound, creating an electromagnetic barrier to their escape. But, given a jolt from a laser, electrons can break free. That jolt weakens the electromagnetic barrier just enough that electrons can leave, but only by tunneling.

Although the scientists weren’t able to measure the tunneling time directly, they set up their experiment so that the angle at which the electrons flew away from the atom would reveal which of the two theories was correct. The laser’s light was circularly polarized — its electromagnetic waves rotated in time, changing the direction of the waves’ wiggles. If the electron escaped immediately, the laser would push it in one particular direction. But if tunneling took time, the laser’s direction would have rotated by the time the electron escaped, so the particle would be pushed in a different direction.

Comparing argon and krypton let the scientists cancel out experimental errors, leading to a more sensitive measurement that was able to distinguish between the two theories. The data matched predictions based on the theory that tunneling takes time.
The conclusion jibes with some physicists’ expectations. “I’m pretty sure that the tunneling time cannot be instantaneous, because at the end, in physics, nothing can be instantaneous,” says physicist Ursula Keller of ETH Zurich. The result, she says, agrees with an earlier experiment carried out by her team.

Other scientists still think instantaneous tunneling is possible. Physicist Olga Smirnova of the Max Born Institute in Berlin notes that Keitel and colleagues’ conclusions contradict previous research. In theoretical calculations of tunneling in very simple systems, Smirnova and colleagues found no evidence of tunneling time. The complexity of the atoms studied in the new experiment may have led to the discrepancy, Smirnova says. Still, the experiment is “very accurate and done with great care.”

Although quantum tunneling may seem an esoteric concept, scientists have harnessed it for practical purposes. Scanning tunneling microscopes, for instance, use tunneling electrons to image individual atoms. For such an important fundamental process, Keller says, physicists really have to be certain they understand it. “I don’t think we can close the chapter on the discussion yet,” she says.

Ancient people arrived in Sumatra’s rainforests more than 60,000 years ago

Humans inhabited rainforests on the Indonesian island of Sumatra between 73,000 and 63,000 years ago — shortly before a massive eruption of the island’s Mount Toba volcano covered South Asia in ash, researchers say.

Two teeth previously unearthed in Sumatra’s Lida Ajer cave and assigned to the human genus, Homo, display features typical of Homo sapiens, report geoscientist Kira Westaway of Macquarie University in Sydney and her colleagues. By dating Lida Ajer sediment and formations, the scientists came up with age estimates for the human teeth and associated fossils of various rainforest animals excavated in the late 1800s, including orangutans.

Ancient DNA studies had already suggested that humans from Africa reached Southeast Asian islands before 60,000 years ago.

Humans migrating out of Africa 100,000 years ago or more may have followed coastlines to Southeast Asia and eaten plentiful seafood along the way (SN: 5/19/12, p. 14). But the Sumatran evidence shows that some of the earliest people to depart from Africa figured out how to survive in rainforests, where detailed planning and appropriate tools are needed to gather seasonal plants and hunt scarce, fat-rich prey animals, Westaway and colleagues report online August 9 in Nature.

Where does the solar wind come from? The eclipse may offer answers

The sun can’t keep its hands to itself. A constant flow of charged particles streams away from the sun at hundreds of kilometers per second, battering vulnerable planets in its path.

This barrage is called the solar wind, and it has had a direct role in shaping life in the solar system. It’s thought to have stripped away much of Mars’ atmosphere (SN: 4/29/17, p. 20). Earth is protected from a similar fate only by its strong magnetic field, which guides the solar wind around the planet.
But scientists don’t understand some key details of how the wind works. It originates in an area where the sun’s surface meets its atmosphere. Like winds on Earth, the solar wind is gusty — it travels at different speeds in different areas. It’s fastest in regions where the sun’s atmosphere, the corona, is dark. Winds whip past these coronal holes at 800 kilometers per second. But the wind whooshes at only around 300 kilometers per second over extended, pointy wisps called coronal streamers, which give the corona its crownlike appearance. No one knows why the wind is fickle.
The Aug. 21 solar eclipse gives astronomers an ideal opportunity to catch the solar wind in action in the inner corona. One group, Nat Gopalswamy of NASA’s Goddard Spaceflight Center in Greenbelt, Md., and his colleagues, will test a new version of an instrument called a polarimeter, built to measure the temperature and speed of electrons leaving the sun. Measurements will start close to the sun’s surface and extend out to around 5.6 million kilometers, or eight times the radius of the sun.

“We should be able to detect the baby solar wind,” Gopalswamy says.

Set up at a high school in Madras, Ore., the polarimeter will separate out light that has been polarized, or had its electric field organized in one direction, from light whose electric field oscillates in all sorts of directions. Because electrons scatter polarized light more than non-polarized light, that observation will give the scientists a bead on what the electrons are doing, and by extension, what the solar wind is doing — how fast it flows, how hot it is and even where it comes from.
Gopalswamy and colleagues will also take images in four different wavelengths of light, as another measurement of speed and temperature. Mapping the fast and slow solar winds close to the surface of the sun can give clues to how they are accelerated.
The team tried out an earlier version of this instrument during an eclipse in 1999 in Turkey. But that instrument required the researchers to flip through three different polarization filters to capture all the information that they wanted. Cycling through the filters using a hand-turned wheel was slow and clunky — a problem when totality, the period when the moon completely blocks the sun, only lasts about two minutes.
The team’s upgraded polarimeter is designed so it can simultaneously gather data through all three filters and in four wavelengths of light. “The main requirement is that we have to take these images as close in time as possible, so the corona doesn’t change from one period to the next,” Gopalswamy says. One exposure will take 2 to 4 seconds, plus a 6-second wait between filters. That will give the team about 36 images total.

Gopalswamy and his team first tested this instrument in Indonesia for the March 2016 solar eclipse. “That experiment failed because of noncooperation from nature,” Gopalswamy says. “Ten minutes before the eclipse, the rain started pouring down.”

This year, they chose Madras because, historically, it’s the least cloud-covered place on the eclipse path. But they’re still crossing their fingers for clear skies.

If the past is a guide, Hubble’s new trouble won’t doom the space telescope

Hubble’s in trouble again.

The 28-year-old space telescope, in orbit around the Earth, put itself to sleep on October 5 because of an undiagnosed problem with one of its steering wheels. But once more, astronomers are optimistic about Hubble’s chances of recovery. After all, it’s just the latest nail-biting moment in the history of a telescope that has defied all life-expectancy predictions.

There is one major difference this time. Hubble was designed to be repaired by astronauts on the space shuttle. Each time the telescope broke previously, a shuttle mission fixed it. “That we can’t do anymore, because there ain’t no shuttle,” says astronomer Helmut Jenkner of the Space Telescope Science Institute in Baltimore, who is Hubble’s deputy mission head.
The most recent problem started when one of the three gyroscopes that control where the telescope points failed. That wasn’t surprising, says Hubble senior project scientist Jennifer Wiseman of NASA’s Goddard Space Flight Center in Greenbelt, Md. That particular gyroscope had been glitching for about a year. But when the team turned on a backup gyroscope, it didn’t function properly either.

Astronomers are working to figure out what went wrong and how to fix it from the ground. The mood is upbeat, Wiseman says. But even if the gyroscope doesn’t come back online, there are ways to point Hubble and continue observing with as few as one gyroscope.

“This is not a catastrophic failure, but it is a sign of mortality,” says astronomer Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. Like cataracts, he says, it’s “a sign of aging, but there’s a very good remedy.”
While we wait for news of how Hubble is faring, here’s a look back at some of its previous hiccups and repair missions.

1990: The blurry mirror
On June 27, 1990, three months after the space telescope launched, astronomers discovered an aberration in Hubble’s primary mirror. Its curvature was off by two micrometers, making the images slightly blurry.

The telescope soldiered on, despite being the butt of jokes on late-night TV. It observed a supernova that exploded in 1987 (SN: 2/18/17, p. 20), measured the distance to a satellite galaxy of the Milky Way and took its first look at Jupiter before the space shuttle Endeavour arrived to fix the mirror in December 1993.
1999: The first gyroscope crisis
On November 13, 1999, Hubble was put into safe mode after the fourth of its six gyroscopes failed, leaving it without the three working gyros necessary to point precisely.
An already planned preventative maintenance shuttle mission suddenly became more urgent. NASA split the mission into two parts to get to the telescope more quickly. The first part became a rescue mission: Astronauts flew the space shuttle Discovery to Hubble that December to install all new gyroscopes and a new computer.

2004: Final shuttle mission canceled
After the space shuttle Columbia disintegrated while re-entering Earth’s atmosphere in 2003, NASA canceled the planned fifth and final Hubble reservicing mission. “That could really have been the beginning of the end,” Jenkner says.

The team has known for more than a decade that someday Hubble will have to work with fewer than three gyroscopes. To prepare, Hubble’s operations team deliberately shut down one of the telescope’s gyroscopes in 2005, to observe with only two.

“We’ve been thinking about this possibility for many years,” Wiseman says. “This time will come at some point in Hubble’s mission, either now or later.”

Shutting down the third gyroscope was expected to extend Hubble’s life by only eight months, until mid-2008. In the meantime, two of the telescope’s scientific instruments — the Space Telescope Imaging Spectrograph and the Advanced Camera for Surveys — stopped working due to power supply failures.
2009: New lease on life
Fortunately, NASA restored the final servicing mission, and the space shuttle Atlantis visited Hubble in May 2009 (SN Online: 5/11/09). That mission restored Hubble’s cameras, installed new ones and crucially, left the space telescope with six new gyroscopes, three for immediate use and three backups. The three gyroscopes still in operation (including the backup that is currently malfunctioning) are of a newer type, and are expected to live five times as long as the older ones, which last four to six years.

The team expects Hubble to continue doing science well into the 2020s and to have years of overlap with its successor, the James Webb Space Telescope, due to launch in 2021. “We are always worried,” says Jenkner, who has been working on Hubble since 1983. “At the same time, we are confident that we will be running for quite some time more.”

People who have a good sense of smell are also good navigators

We may truly be led by our noses. A sense of smell and a sense of navigation are linked in our brains, scientists propose.

Neuroscientist Louisa Dahmani and colleagues asked 57 young people to navigate through a virtual town on a computer screen before being tested on how well they could get from one spot to another. The same young people’s smelling abilities were also scrutinized. After a sniff of one of 40 odor-infused felt-tip pens, participants were shown four words on a screen and asked to choose the one that matched the smell. On these two seemingly different tasks, the superior smellers and the superior navigators turned out to be one and the same, the team found.

Scientists linked both skills to certain spots in the brain: The left orbitofrontal cortex and the right hippocampus were both bigger in the better smellers and better navigators. While the orbitofrontal cortex has been tied to smelling, the hippocampus is known to be involved in both smelling and navigation. A separate group of nine people who had damaged orbitofrontal cortices had more trouble with navigation and smell identification, the researchers report October 16 in Nature Communications. Dahmani, who’s now at Harvard University, did the work while she was at McGill University in Montreal.

A sense of smell may have evolved to help people find their way around, an idea called the olfactory spatial hypothesis. More specific aspects of smell, such as how good people are at detecting faint whiffs, could also be tied to navigation, the researchers suggest.