Gaia mission’s Milky Way map pinpoints locations of billion-plus stars

A new map of the galaxy, the most precise to date, reveals positions on the sky for over 1 billion stars both within and beyond the Milky Way.

This new galactic atlas, courtesy of the European Space Agency’s Gaia spacecraft, also provides distances to roughly 2 million of those stars, laying the groundwork for astronomers who want to piece together the formation, evolution and structure of the Milky Way.

“This is a major advance in mapping the heavens,” Anthony Brown, an astrophysicist at Leiden University in the Netherlands, said September 14 at a news briefing. “Out of the 1 billion stars, we estimate that over 400 million are new discoveries.”
There are no major cosmic revelations yet; those will develop in the months and years to come as astronomers pore over the data. This catalog of stars is just a first peek at what’s to come from Gaia, which is spending five years gathering intel on a wide variety of celestial objects.

The final survey will eventually provide a 3-D map of over 1 billion stars. It will also chart positions of roughly 250,000 asteroids and comets within the solar system, 1 million galaxies, and 500,000 quasars — the blazing cores of galaxies lit up by gas swirling around supermassive black holes. Mission scientists also expect they will turn up over 10,000 undiscovered planets orbiting other stars.

“It’s a very democratic mission,” said project scientist Timo Prusti. “Anything that looks like a [point of light] gets caught up and observed.”

Gaia launched on December 19, 2013, and eventually settled into its home about 1.5 million kilometers from Earth on an orbit that follows our planet around the sun (SN Online: 12/19/13). Regular science observations started in July 2014. This first data release, described in a series of papers being published online starting September 14 in Astronomy & Astrophysics, contains data obtained through September 2015.

The spacecraft repeatedly scans the sky with two telescopes pointed in different directions. To make the 3-D map, Gaia measures each star’s parallax, a subtle apparent shift in the position of the star caused by the changing viewing angle as the spacecraft loops around the sun. By measuring the amount of parallax, and knowing the size of Gaia’s orbit, astronomers can triangulate precise distances to those stars.
With distances in hand, astronomers can figure out how intrinsically bright those stars are, which in turn will help researchers understand how stars evolve. A detailed stellar map could also help chart the Milky Way’s distribution of dark matter, the elusive substance that is thought to make up the bulk of the mass in all galaxies and reveals itself only through gravitational interactions with stars and gas.

One controversy that astronomers are eager to resolve with Gaia is the distance to the Pleiades star cluster, one of the closest repositories of youthful stars. A previous Gaia-like mission, the Hipparcos satellite, came up with a distance of about 392 light-years. Estimates based on simulations of how stars evolve as well as observations from the Hubble Space Telescope and ground-based radio observatories pin the Pleiades at about 443 light-years away (SN Online: 4/28/14).

“Clusters give you a sense of the evolution of stars at different ages,” says Jo Bovy, an astrophysicist at the University of Toronto who is not involved with the Gaia mission. “The Pleiades is a nearby cluster that we can study well — it’s one of the cornerstones.” All of the stars in the Pleiades are roughly 100 million years old, and so provide a snapshot of a relatively young stellar age. Nailing down the distance reveals the intrinsic brightness of the stars, which is crucial to understanding how stars develop in their early years.

Gaia appears to be leaning toward the larger distance, Brown said, but there’s still too much uncertainty in the data to say anything definitive. “It’s too early to say how the controversy will be resolved. But Gaia will pin it down.”

The Pleiades distance debate, as well as a clearer picture of how the Milky Way is put together, will have to wait for future data releases from Gaia. The next release is planned for late 2017; the final catalog won’t be available until 2022.

“Those will be much more interesting,” Bovy says. “Then we can actually start using our modeling machinery and see how stars are distributed throughout the galaxy. We can test our understanding of dark matter and our understanding of how the Milky Way formed.”

Digital rehab exposes Biblical roots of ancient Israeli scroll

Researchers have digitally unwrapped and read an ancient Hebrew scroll that’s so charred it can’t be touched without falling apart. It turns out the document contains the oldest known Biblical text outside of the roughly 2,000-year-old Dead Sea Scrolls, the investigators say.

Archaeologists discovered the scroll’s remnants in a synagogue’s holy ark during a 1970 excavation in Israel of En-Gedi, a Jewish community destroyed by fire around 600.

In a series of digital steps, slices from a 3-D scan of the En-Gedi scroll were analyzed to bring letters and words into relief on a pieced-together, virtual page. Those images revealed passages from the book of Leviticus written in ink on the scroll’s disintegrating sheets. Radiocarbon results date the scroll to approximately 300, making it the earliest copy of an Old Testament book ever found in a holy ark, scientists report September 21 in Science Advances.

This computerized recovery and conservation process can now be used to retrieve other ancient documents “from the brink of oblivion,” the researchers say.

Glass bits, charcoal hint at 56-million-year-old space rock impact

DENVER — A period of skyrocketing global temperatures started with a bang, new research suggests.

Impact debris and evidence of widespread wildfires around eastern North America suggest that a large space rock whacked Earth around 56 million years ago at the beginning of the Paleocene-Eocene Thermal Maximum, also known as the PETM, a period of rapid warming and huge increases in carbon dioxide. The event is one of the closest historic analogs to modern global warming and is used to improve predictions of how Earth’s climate and ecosystems will fare in the coming decades.
Too little is known about the newfound impact to guess its origin, size or effect on the global climate, said geochemist Morgan Schaller of Rensselaer Polytechnic Institute in Troy, N.Y. But it fits in with the long-standing and controversial proposal that a comet impact caused the PETM. “The timing is nothing short of remarkable,” said Schaller, who presented the discovery September 27 at the Geological Society of America’s annual meeting.

The impact may have contributed to the rapid rise in CO2 by stirring carbon up into the atmosphere, but it was hardly the sole cause, said Sandra Kirtland Turner, a geochemist at the University of California, Riverside. Her own environmental simulations suggest that the influx of carbon that flooded Earth during the PETM probably took place over at least 2,500 years, far too drawn out to be caused by a single event, she said at the same meeting.

During the PETM, a massive influx of carbon flooded the atmosphere (SN: 5/30/15, p. 15) and Earth warmed by 5 to 8 degrees Celsius to temperatures much hotter than today. That carbon dump altered the relative abundance of different carbon isotopes in the atmosphere and oceans, leaving a signal in the sedimentary record.

While searching for that signal in roughly 56-million-year-old sediments from sites up and down the U.S. East Coast, Schaller spotted microscopic glassy spheres about the size of a dust mite. These specks resemble those blasted from previously identified large impact events. After switching from a black to a white sorting tray to more easily see the black debris, one of Schaller’s Rensselaer colleagues, micropaleontologist Megan Fung, discovered abundant charcoal pieces in the mix. That charcoal formed when wildfires sparked by the impact raged across the landscape, she proposed.

More evidence of the impact will help researchers to better constrain its location, scope and possible relationship to the start of the PETM, Schaller said.

‘Voyage of Time’ is Terrence Malick’s ode to life

Condensing billions and billions and billions of years into a 45-minute film is a tall order. But director Terrence Malick took on the challenge with Voyage of Time. The film, now playing in IMAX theaters, surveys the 13.8-billion-year history of the universe and even looks eons into the future when we — life on Earth, the planet and the entire solar system — are gone.

Starting with the Big Bang, Voyage of Time progresses through highlights of the past, with a central focus on the evolution of life. Malick, best known for directing visually rich dramas such as The Thin Red Line and The Tree of Life, presents breathtaking cinematography, using locales such as Hawaii’s lava-oozing Kilauea volcano as stand-ins for the past. Stunning visualizations and special effects bring to life the formation of the planets, the origin of the first cells, the demise of the sun and other events that scientists can only imagine.
The film marks Malick’s first attempt at documentary filmmaking. If you can call it that. Viewers hoping for a David Attenborough–style treatment of the subject matter will be disappointed. The film is more evocative, with moody scenes that provide little explication. And what narration (by Brad Pitt) there is tends to be philosophical rather than informative.

Serious science enthusiasts may find some reasons to quibble with the movie. For one, it’s hard to grasp the true immenseness and scale of cosmic time. With so much screen time devoted to the evolution of life, many viewers may not realize just how relatively recent a phenomenon it is. After the Big Bang, more than 9 billion years passed before Earth began to form. It took many hundred thousand more years before the first microbes emerged.
Malick’s treatment of evolution may also rankle some viewers. At times, the narration seems to imply life was destined to happen, with the young, barren Earth just waiting around for the first seeds of life to take root. At other times, the narration imbues evolution with purpose. Pitt notes, for instance, that perfecting a leaf took eons. Yet perfection is something evolution neither achieves nor strives for — it’s a process that lacks intentionality.

These critiques aside, Malick sought to tell an accurate story, enlisting an accomplished group of scientists as advisers, including Lee Smolin of the Perimeter Institute for Theoretical Physics in Waterloo, Canada. Smolin says he was impressed with the end result. “It’s a very unusual film,” he says, likening it to a visual poem or piece of art.

And that’s probably the best mindset to watch Voyage of Time: Just sit back, soak in the dazzling visuals and contemplate the wonders of nature.